陈戈 | 助理教授
2025/05/13 来源: 编辑:

邮箱: gechen@gbu.edu.cn

个人主页:https://lelouchsola.github.io/ChenGe/


科研领域

智慧能源,电网优化调度,AI驱动的优化决策,交通电气化


学习经历

华中科技大学 热能与动力工程 学士
西安交通大学 动力工程及工程热物理 硕士
澳门大学 电机与电脑工程 博士


工作经历 

2023.10-2025.4 美国普渡大学 博士后
2025.4-至今 大湾区大学(筹)助理教授、研究员、博导


主要成果

      陈戈博士于2023年在澳门大学电机与电脑工程系取得博士学位,导师为宋永华教授(英国皇家工程院院士,欧洲科学院外籍院士,国际欧亚科学院院士,IEEE Fellow,澳门大学校长,智慧城市物联网国家重点实验室主任),并于同一年赴美国普渡大学ECE系从事博士后研究。长期从事AI驱动的配电网优化调度方面的研究,深度参与了国家重点研发计划、澳门重点研发专项等多项基础研究和产业项目,形成了集精准建模、高效决策、风险管理为一体的电网优化基础理论和关键技术。近5年以第一或通讯作者发表高水平论文17篇,其中SCI源刊论文12篇(9篇发表在电力领域顶级期刊IEEE TSG、IEEE TPWRS及IEEE TSTE上),完成专著一部,并在国际学术会议报告4次(包括3次电力系统顶级会议IEEE PESGM)。相关创新成果获得国内外学术界的认可,被多位中科院院士、IEEE Fellow及其团队正向评价和引用。关键技术在国家电投集团等企业落地应用。长期担任IEEE TSG/IEEE TPWRS/IEEE TSTE/Applied Energy等顶级期刊审稿人。获澳门科学技术基金科技研发奖(澳门地区最高级别奖励,两年评选30人)。


代表性成果

[1] Ge Chen and Junjie Qin, "Neural Risk Limiting Dispatch in Power Networks: Formulation and Generalization Guarantees," in IEEE Transactions on Power Systems, Early Access, 2025. (SCI,中科院一区TOP)
[2] Ge Chen, Junjie Qin and Hongcai Zhang. "Model-free self-supervised learning for dispatching distributed energy resources." IEEE Transactions on Smart Grid, 16, no. 2 (2025): 1287-1300. (SCI,中科院一区TOP)
[3] Ge Chen, Hongcai Zhang, Junjie Qin and Yonghua Song. "Replicating power flow constraints using only smart meter data for coordinating flexible sources in distribution network," in IEEE Transactions on Sustainable Energy, 15, no. 4 (2024): 2428-2443. (SCI,中科院一区TOP)
[4] Ge Chen, Hongcai Zhang and Yonghua Song. "Adversarial constraint learning for robust dispatch of distributed energy resources in distribution systems." IEEE Transactions on Sustainable Energy, vol. 16, no. 2, pp. 1139-1152, April 2025. (SCI,中科院一区TOP)
[5] Ge Chen, Hongcai Zhang and Yonghua Song. "Efficient constraint learning for data-driven active distribution network operation." IEEE Transactions on Power Systems, 39, no. 1 (2024): 1472-1484. (SCI,中科院一区TOP)
[6] Ge Chen, Hongcai Zhang, Hongxun Hui and Yonghua Song. " Deep-quantile-regression-based surrogate model for joint chance-constrained optimal power flow with renewable generation." IEEE Transactions on Sustainable Energy, 14, no. 1 (2023): 657-672. (SCI,中科院一区TOP)
[7] Ge Chen, Hongcai Zhang, Hongxun Hui and Yonghua Song. "Chance-constrained regulation capacity offering for HVAC systems under non-gaussian uncertainties with mixture-model-based convexification." IEEE Transactions on Smart Grid, 13, no. 6 (2022): 4379-4391. (SCI,中科院一区TOP)
[8] Ge Chen, Hongcai Zhang, Hongxun Hui and Yonghua Song. "Scheduling thermostatically controlled loads to provide regulation capacity based on a learning-based optimal power flow model." IEEE Transactions on Sustainable Energy, 12, no. 4 (2021): 2459-2470. (SCI,中科院一区TOP)
[9] Ge Chen, Hongcai Zhang, Hongxun Hui and Yonghua Song. "Scheduling HVAC loads to promote renewable generation integration with a learning-based joint chance-constrained approach," CSEE Journal of Power and Energy Systems, Early Access, 2023. (SCI,中科院二区)
[10] Ge Chen, Hongcai Zhang, Hongxun Hui and Yonghua Song. "Fast Wasserstein-distance-based distributionally robust chance-constrained power dispatch for multi-zone HVAC systems." IEEE Transactions on Smart Grid, 12, no. 5 (2021): 4016-4028, Sept. 2021. (SCI,中科院二区)
[11] Ge Chen, Biao Yan, Hongcai Zhang, Dongdong Zhang and Yonghua Song. "Time-efficient strategic power dispatch for district cooling systems considering evolution of cooling load uncertainties." CSEE Journal of Power and Energy Systems, 8, no. 5 (2022): 1457-1467. (SCI,中科院二区)
[12] Yonghua Song, Ge Chen* and Hongcai Zhang. "Constraint learning-based optimal power dispatch for active distribution networks with extremely imbalanced data," CSEE Journal of Power and Energy Systems, 10, no. 1 (2024): 51-65. (SCI,中科院二区)
[13] 宋永华,张洪财,陈戈*.“智慧城市能源系统迈向碳中和的典型路径研究――以澳门特别行政区为例”.中国科学院院刊, 2022, 37(11). (CSSCI)


课题组信息 

课题组长期招收博士(与哈工大深圳等高校联培)和硕士研究生(与南科大等高校联培),同时接收博士后(与清华大学深圳国际研究生院、中科大联培)、特任研究员与研究助理申请。课题组主要开展智慧城市、电力系统优化、车网互动(V2G)等领域的前沿研究,重点包括人工智能技术在电力系统运行、规划、韧性等方面的应用。


招生要求 
1. 学术背景:数学基础扎实、编程能力和算法基础较强;
2. 学术潜力:有良好的中英文学术阅读和表达能力,具备较强的独立思考和创新能力,积极参与学术讨论和科研工作;
3. 成绩要求:本科阶段成绩优秀,具有较强的科研潜力;或有相关领域研究经验。


申请方式 
有意向的候选人请将
1. 个人简历、成绩简述、英语水平,

2. (博士申请,可选)研究陈述、未来研究计划(1-2年)。

发送至邮箱gechen@gbu.edu.cn,邮件标题为 特任研究员/博士后/博士/硕士/科研助理申请-姓名-生源高校,例如 博士申请-张三-大湾区大学。